Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations
نویسندگان
چکیده
In this paper we develop and analyze a multilevel weighted reduced basis method for solving stochastic optimal control problems constrained by Stokes equations. Existence and uniqueness of the stochastic optimal solution is proved by establishing the equivalence between the constrained optimization problem and a stochastic saddle point problem. Analytic regularity of the optimal solution in the probability space is obtained under certain assumptions on the random input data. Finite element method and stochastic collocation method are employed for numerical approximation of the problem in deterministic space and probability space, respectively. A reduced basis method using a multilevel greedy algorithm based on isotropic and anisotropic sparse-grid techniques and weighted a posteriori error estimate is proposed in order to reduce the computational effort. A global error is obtained based on estimate results of error contribution from each method. Numerical experiments are performed with stochastic dimension ranging from 10 to 100, demonstrating that the proposed method is very efficient, especially for high dimensional and large-scale optimization problems.
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملModel Order Reduction Techniques for Uncertainty Quantification Problems
The last few years have witnessed a tremendous development of the computational field of uncertainty quantification (UQ), which includes statistical, sensitivity and reliability analyses, stochastic or robust optimal control/design/optimization, parameter estimation, data assimilation, to name just a few. In all these problems, the solution of stochastic partial differential equations (PDEs) is...
متن کاملSolution of Bang-Bang Optimal Control Problems by Using Bezier Polynomials
In this paper, a new numerical method is presented for solving the optimal control problems of Bang-Bang type with free or fixed terminal time. The method is based on Bezier polynomials which are presented in any interval as $[t_0,t_f]$. The problems are reduced to a constrained problems which can be solved by using Lagrangian method. The constraints of these problems are terminal state and con...
متن کاملWeighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint
In this paper we develop and analyze an efficient computational method for solving stochastic optimal control problems constrained by elliptic partial differential equation (PDE) with random input data. We first prove both existence and uniqueness of the optimal solution. Regularity of the optimal solution in the stochastic space is studied in view of the analysis of stochastic approximation er...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 133 شماره
صفحات -
تاریخ انتشار 2016